19 research outputs found

    Light field image denoising using a linear 4D frequency-hyperfan all-in-focus filter

    Full text link
    Imaging in low light is problematic as sensor noise can dominate imagery, and increasing illumination or aperture size is not always effective or practical. Computational photography offers a promising solution in the form of the light field camera, which by capturing redundant information offers an opportunity for elegant noise rejection. We show that the light field of a Lambertian scene has a 4D hyperfan-shaped frequency-domain region of support at the intersection of a dual-fan and a hypercone. By designing and implementing a filter with appropriately shaped passband we accomplish denoising with a single all-in-focus linear filter. Drawing examples from the Stanford Light Field Archive and images captured using a commercially available lenselet-based plenoptic camera, we demonstrate that the hyperfan outperforms competing methods including synthetic focus, fan-shaped antialiasing filters, and a range of modern nonlinear image and video denoising techniques. We show the hyperfan preserves depth of field, making it a single-step all-in-focus denoising filter suitable for general-purpose light field rendering. We include results for different noise types and levels, over a variety of metrics, and in real-world scenarios. Finally, we show that the hyperfan’s performance scales with aperture count. 1

    A comparative analysis of virial black hole mass estimates of moderate-luminosity active galactic nuclei using Subaru/FMOS

    Get PDF
    We present an analysis of broad emission lines observed in moderate-luminosity active galactic nuclei (AGNs), typical of those found in X-ray surveys of deep fields, with the goal of testing the validity of single-epoch virial black hole mass estimates. We have acquired near-infrared spectra of AGNs up to z ~ 1.8 in the COSMOS and Extended Chandra Deep Field-South Survey, with the Fiber Multi-Object Spectrograph mounted on the Subaru telescope. These near-infrared spectra provide a significant detection of the broad Hα line, shown to be a reliable probe of black hole mass at low redshift. Our sample has existing optical spectroscopy that provides a detection of Mg II, typically used for black hole mass estimation at z >~ 1. We carry out a spectral-line fitting procedure using both Hα and Mg II to determine the virial velocity of gas in the broad-line region, the continuum luminosity at 3000 Å, and the total Hα line luminosity. With a sample of 43 AGNs spanning a range of two decades in luminosity, we find a tight correlation between the ultraviolet and emission-line luminosity. There is also a close one-to-one relationship between the full width at half-maximum of Hα and Mg II. Both of these then lead to there being very good agreement between Hα- and Mg II-based masses over a wide range in black hole mass, i.e., M BH ~ 107-9 M ⊙. In general, these results demonstrate that local scaling relations, using Mg II or Hα, are applicable for AGNs at moderate luminosities and up to z ~ 2

    Dysregulation of voltage-gated sodium channels by ubiquitin ligase NEDD4-2 in neuropathic pain.

    Get PDF
    Peripheral neuropathic pain is a disabling condition resulting from nerve injury. It is characterized by the dysregulation of voltage-gated sodium channels (Navs) expressed in dorsal root ganglion (DRG) sensory neurons. The mechanisms underlying the altered expression of Navs remain unknown. This study investigated the role of the E3 ubiquitin ligase NEDD4-2, which is known to ubiquitylate Navs, in the pathogenesis of neuropathic pain in mice. The spared nerve injury (SNI) model of traumatic nerve injury-induced neuropathic pain was used, and an Nav1.7-specific inhibitor, ProTxII, allowed the isolation of Nav1.7-mediated currents. SNI decreased NEDD4-2 expression in DRG cells and increased the amplitude of Nav1.7 and Nav1.8 currents. The redistribution of Nav1.7 channels toward peripheral axons was also observed. Similar changes were observed in the nociceptive DRG neurons of Nedd4L knockout mice (SNS-Nedd4L-/-). SNS-Nedd4L-/- mice exhibited thermal hypersensitivity and an enhanced second pain phase after formalin injection. Restoration of NEDD4-2 expression in DRG neurons using recombinant adenoassociated virus (rAAV2/6) not only reduced Nav1.7 and Nav1.8 current amplitudes, but also alleviated SNI-induced mechanical allodynia. These findings demonstrate that NEDD4-2 is a potent posttranslational regulator of Navs and that downregulation of NEDD4-2 leads to the hyperexcitability of DRG neurons and contributes to the genesis of pathological pain
    corecore